

International Collaboration for sustainable Glass Manufacturing

With Aston Fuller, General Manager and Masimba Toperesu, R&D Projects Lead

THE GLOBAL CENTRE OF EXCELLENCE FOR GLASS IN R&D, INNOVATION AND TRAINING

AGENDA

India-UK Collaboration Opportunities

Energy for Growth Dialogue 2017 - Inaugural meeting April 2017 in New Delhi

UKRI – Funded India Lab 2 Lab collaboration – 2022

UKRI Visit India Mission - March 2023

India visit UK Mission - May 2023

UK - India Round 7 FTA Talks – March 2023

- There is expected to be a long and positive relationship for UK-India trade
- Opportunity to ensure that collaboration on technology is also part of the relationship
- How do we ensure GLASS is part of this relationship discussion?

Construction Pharmaceuticals

Defence and aerospace

Glass As An Enabler

G Glass Futures

Food and Drink Optics and telecommunications Power generation

Who We Are

We were built by the glass industry, for the glass industry to create the Global Centre of Excellence for glass R&D, innovation and training

Non-Profit, Membership Organisation

Glass

tures

Research and Technology Organisation

Leading the global shift to sustainable manufacture

Our Mission

Support organizations Sustainability Journey

Demonstrate disruptive technologies

Generate new impactful ideas felt through the supply chain to the consumer

Our Vision

A sustainable future, enabled by glass.

Collaborating To Accelerate Global Change

01 Academia and Research Organisations

Provides industry with solutions but lacks resources to scale technology

02 Industry and Supply Chain

Shared costs and resources to speed up rate of development

03 End Users

Needs faster, more efficient route to success

Network Space

Landowner and developer, also securing £12m private sector/institutional investment towards construction costs with a freehold and lease sale

UKRI

£21m through Transforming Foundation Industry (TFI) Challenge fund for fit out and commissioning of R&D facility

Bridging The Technology Readiness Level (TRL) Gap

Tackle Big Problems Collaboratively

Experimenting during production is risky and expensive as margins on glass container manufacturing require maximum plant uptime and production efficiency.

Our **consortium working groups** will accelerate research efforts towards a sustainable future, **to reduce risk and cost** to one individual member.

And Small Problems Privately

GFL is not in the business of supplying glass but supplying glass process experimentation, hence **enabling faster introduction of technologies and processes** that would otherwise take many more years to introduce.

We can help pull together **your own projects** to gain **competitive advantage** in the marketplace.

- Develop new ideas and concepts
- Decrease time to market for new products
- Innovation funding and project management services
- Consultancy and expertise from Glass Futures and our network of leading experts

Knowledge

Our Key Product!

Pilot Facility: St Helens, UK

- 165,000 Sq Ft Industrial facility
- 100,000 Sq Ft Industrial yard
- Open access innovation ecosystem
- 30T/day glass R&D capability
- Industrial scale lab space available
- Circular economy testing of new materials
- Low-carbon fuels:
 - Natural Gas
 - Hydrogen
 - Electric
 - Bio-fuels
- Container, float and fibre manufacturing processes possible
- Warehousing and logistics
 - Digital supply chain proving ground
- Highly skilled jobs and apprenticeships
- Construction complete March 2023

Raw Materials and Composition and batch

- Batch and glass composition development
- Testing new/alternative raw materials
- Effect of additives, e.g. surfactants
- High cullet levels
- Pelletisation
- Briquetting
- Pre-treatment

Control/Monitoring/ Modelling

- Camera development
- IoT/Digitalisation
- Feedback control
- Modelling validation
- Tracer experiments

Batch charging and pattern control

- Batch pattern and charging optimization
- Batch physical properties
 - Moisture content

Fuels and Combustion

Liquid biofuels

superboost)

Fuel mixtures

✓ Waste Heat Recovery (secondary)

Boosting (including

- Particle size (including cullet)
- Camera development
- Feeder Design/control

Alternative fuels

2

۲.

Oxv-H2

Air-H2

Key Collaborative programmes

- Key to success is to work together as a big collaborative consortium
- Also interested in IS machine developments, news coatings and inspection technology – Expect these developments to be smaller groups.
- Masimba will also talk through the refractory development in a little more detail

processes) Burner development and testing

G Glass Futures

Furnace Features and Capability (Refractory)

- Glass contact test pocket (deep & shallow sections)
 - Stirrers/Bubblers within test pocket drain -
 - Immersed electrodes? Electrode block test site
- **Late stage addition composition changes**
 - Forehearth section
 - Field trial tests of expendable products
- 3 Crown Sections Potential of 1 test section to be used for testing.
- Flue gas Refractory Test chamber
 - Potential for 3 layers of refractories bricks tested in the flue gas flow on the "in" (downward flow) and "out" (upward flow).
 - Up to six layers in total (no drawing yet). Ideal for regenerator type materials but other materials as well.

Training Opportunities & Capabilities

- Provision of a safe controlled opportunity for operational/process training
- Opportunities for Inside Training for Ops/staff
 - Inserting refractory blocks for electrodes in the test pocket hot bath.
 - Refractory repair hot/cold patch repairs
- Furnace Installation inc. heat-up and cool down
- Glass Technology classroom and applied together
- Rolled Plate and IS machine operator training and development
- PhD Student and University student placement oppourtunities

A data rich environment!

One single site wide Control system for Data

Key Systems

Building works complete and handed over in April 2023

All major fit-out works through 2023

Plant start up in early 2024

Eme provided Batch plant Custom Furnace designed by Stara Glass 2 x R&D manufacturing lines

	GGP Works
	Hand Over B & K
	GGP Steelwork Packages
	GGP Builders works
	GGP Civils works
	Control Systems Infrastructure
	Utilities
	Distribution of Utilities
	Electrical Systems
	Water
	Compressed Air & Vacuum
	Natural Gas
	Hydrogen
	Oxygen
	Diesel & Test Oils
	Nitrogen (Not Required Phase 1)
	Other Gases (Not required Phase 1)
	Batch Plant & Cullet Return
	Batch Plant
	GFL Works
	EME's Work Plan - Batch Plant
	GAME's Work Plan - Batch Plant
	Cullet Return
	Furnace & Flue Gas
	Furnace
	Flue Gas
	WE & Forehearths
	Container Glass Line
	Flat Glass Line
	Laboratory
	Workshops
	Storage
	Mouldshop
	Process Rooms Fit-out
	Fire Systems - Process Area
	Vehicles
١	WP3 - Operations Team Recruitment

G Glass Futures

Adding value to industry with research

Combustion Test Bed

350kW combustion test-rig Highly instrumented, IR camera Fuels: Natural Gas, Hydrogen, Biofuels and blends Air preheat: 0°C - 1000°C Ability to fire from ambient temperatures

Glass Futures

Low carbon fuels for industrial furnaces

- More than £22 million funding to date across five projects
- Partners from industry, supply-chain and academia, brands, across the glass, steel and ceramics sectors

Industrial Biofuel Trials

Encirc, Derrylin, January 2021:

- 400T/day container furnace
- 3 weeks continuous operation without issues
- 4 million low-carbon bottles produced

NSG Pilkington, St Helens. February 2022:

• 850T/day float furnace

Glass Futures

 165,000 sq ft (3 x football pitches) of the lowest carbon float glass ever made (80% reduction in embedded CO₂)

Carbon Capture Utilisation and Storage (CCUS)

- CCUS technologies extract the CO₂ gases from the furnace exhaust
- Processing emissions from glass furnaces is challenging giving the complex nature of the gases (e.g. contain sulphates, NOx, heavy metals, acids)
- Several different CCUS technologies have been developed
- Glass Futures have reviewed the most promising CCUS technologies that could be used within the glass sector
- A C-Capture CCUS unit is due to be installed on the Pilot line in Jan 2024

Outcome

- Carbon Capture does have potential to remove CO₂ emissions from glass furnaces
- The technology is still in the early stages of development and likely to be 2030 before commercially viable for the glass sector
- The economics will be challenging to justify
- Need to have a plan as to what to do with the CO₂ captured

Cross-sector collaborations

- Ceramics sector Lots of testing with H2 complete
- Steel/metals sector
- Cement sector
- Advanced Chemicals/materials manufacture
- Energy sector

Glass

itures

India-UK Collaboration Opportunities

Glass Futures and AIGMF – making positive relationships More focused Glass visits between countries? Events hosted together as UK-India Collaborations

UK - India collaborative funding expected UKRI – CSIR GFL speaking with all UK public sector bodies Possibility to fund work and support applications for funding

Glass Futures members already in India, Brands, Manufacturers and melters!

Making sure people look AT GLASS – NOT THROUGH IT

Any Questions?

Aston.fuller@glass-futures.org

Masimba.Toperesu@glass-futures.org

